Home
Class 12
MATHS
If |veca|=a and |vecb|=b then prove that...

If `|veca|=a` and `|vecb|=b` then prove that `(veca/a^2-vecb/b^2)=((veca-vecb)/(ab))^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (veca/a^2-vecb/b^2)^2=((veca-vecb)/(ab))^2

Prove that: (veca/a^2-vecb/b^2)^2=((veca-vecb)/(ab))^2

If |veca|=a and |vecb|=b , prove that ((veca)/(a^2)-(vecb)/(b^2))^2=((veca-vecb)/(ab))^2 .

Prove that (vecaxxvecb)^2=veca^2b^2-(veca.vecb)^2 .

If |veca| = |vecb|=|veca+vecb|=1 then prove that |veca-vecb|=sqrt(3) .

Prove that (veca.vecb)^2=a^2b^2-(veca xx vecb)^2

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|