Home
Class 12
MATHS
[1+sqrt(a^(-1))x+tan^(-1)y+tan^(-1)z=pi]...

[1+sqrt(a^(-1))x+tan^(-1)y+tan^(-1)z=pi],[x+y+z=xyz]

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=

Prove the followings : If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=xyz .

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/2 then

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), then x+y+z-xyz=0x+y+z+xyz=0xy+yz+zx+1=0xy+yz+zx-1=0

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi/2,t h e n x+y+z-x y z=0 x+y+z+x y z=0 x y+y z+z x+1=0 x y+y z+z x-1=0