Home
Class 14
MATHS
1/(sqrt(3.25)+sqrt(2.25))+1/(sqrt(2.45)+...

`1/(sqrt(3.25)+sqrt(2.25))+1/(sqrt(2.45)+sqrt(3.25))+1/(sqrt(5.25)+sqrt(4.25))+1/(sqrt(6.25)+sqrt(5.25))` का मान ज्ञात करें।

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 1/(sqrt(3.25) + sqrt(2.25)) + 1/(sqrt(4.25) + sqrt(3.25))+ 1/(sqrt(5.25) + sqrt(4.25)) + 1/(sqrt(6.25) + sqrt(5.25)) is:

sqrt(25.3)

sqrt(-25)sqrt(36)

(sqrt25+sqrt225)/(sqrt64+sqrt144)

If x= sqrt3/2 , then the value of (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) is equal to: यदि x= sqrt3/2 , (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) का मान ज्ञात करें :

sqrt(11)+sqrt(3),sqrt(20),sqrt(5)sqrt(15)+sqrt(22),sqrt(25),sqrt(10)3+sqrt(55),sqrt(15),sqrt(25)]|=

Simplify: sqrt(-4) + sqrt(-16)- sqrt(-25)