Home
Class 12
MATHS
Let f be a real valued function defined...

Let `f` be a real valued function defined by `f(x)=(e^x-e^(-|x|))/(e^x+e^(|x|))` , then the range of `f(x)` is: (a)R (b) `[0,1]` (c) `[0,1)` (d) `[0,1/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let be a real valued function defined by f(x) =(e^x-e^(|x|))/(e^x+e^|x|), then the range of f(x) is : (A) R (B) [0, 1] (C) (0, 1) (D) [0,0.5)

f: R to R is a function defined by f(x) =(e^(|x|) -e^(-x))/(e^(x) + e^(-x)) . Then f is:

Let be a real valued function defined by f(x) =e +e^x , then the range of f(x) is :

Let f:Rto R be a functino defined by f (x) = e ^(x) -e ^(-x), then f^(-1)(x)=

let f:R rarr R be a continuous function defined by f(x)=(1)/(e^(x)+2e^(-x))

The function f:R^(+)rarr(1,e) defined by f(x)=(x^(2)+e)/(x^(2)+1) is

A function is defined as f(x) = {{:(e^(x)",",x le 0),(|x-1|",",x gt 0):} , then f(x) is

A function is defined as f(x) = {{:(e^(x)",",x le 0),(|x-1|",",x gt 0):} , then f(x) is