Home
Class 11
MATHS
Let f(x) = {(x sin(1/x)+sin(1/x^2),; x!=...

Let `f(x) = {(x sin(1/x)+sin(1/x^2),; x!=0), (0,;x=0):},` then `lim_(x rarr oo)f(x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = {{:(x (sin 1//x + sin (1//x^(2))),,x ne 0),(0,,x = 0):} Then lim_(x rarr oo) f(x) equals :

If f(x) = [((sin [x])/([x]), [x] ne 0),(0, [x] = 0)] , then lim_(x rarr 0) f(x) is :

lim_(x rarr0)sin^(-1)(sec x) is equal to

lim_(x rarr 0)"x sin" (1)/(x) is equal to :

If f(x)= sqrt((x-sin x)/(x+cos^(2)x)) , then lim_(x rarr oo) f(x) is equal to a)1 b)2 c) (1)/(2) d)0

Let f(x)=det[[cos x,x,x2sin x,x,2xsin x,x,x]], then lim_(x rarr0)(f(x))/(x^(2)) is equal to (a)0(b)-1(c)2(d)3

if f(x)={((1)/(x))sin x,x!=0,0,x=0}f in d lim_(x rarr0)((1)/(x))sin x

Let (x)=|[cos x,2sin x,sin x],[x,x,x],[1,2x,x]|," then "lim_(x rarr0)(f(x))/(x^(2) is equal