Home
Class 11
MATHS
If omega be an imaginary cube root of u...

If `omega` be an imaginary cube root of unity, show that `(1+omega-omega^2)(1-omega+omega^2)=4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega be an imaginary cube root of unity, prove that (1-omega+omega^2)(1+omega-omega^2)=4

If omega be an imaginary cube root of unity, show that (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2

If omega be an imaginary cube root of unity, show that (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2

If omega is an imaginary cube root of unity, then show that (1-omega+omega^2)^5+(1+omega-omega^2)^5 =32

If omega be an imaginary cube root of unity, prove that (1-omega+omega^2)^4+(1+omega-omega^2)^4=-16

If omega be an imaginary cube root of unity, show that, (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(5))=9

If omega be an imaginary cube root of unity, prove that (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)=9

If omega be an imaginary cube root or unity, prove that (1- omega+ omega^(2)) (1-omega^(2)+ omega^(4)) (1- omega^(4)+ omega ^(8))..."to" 2 n th factor =2^(2n)

If omega be an imaginary cube root of unity, show that (xomega^(2)+yomega+z)/(xomega+y+zomega^(2))=omega