Home
Class 12
MATHS
The domain of definition of the function...

The domain of definition of the function `f(x) =1/sqrt(x-[x])`, where [.] denotes the greatest integer function , is:

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Write the piecewise definition of the function: f(x)= [sqrt(x)] , where [.] denotes the greatest integer function.

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is