Home
Class 12
MATHS
The range of f(x) = sin\ pi/2 [x] is, (H...

The range of `f(x) = sin\ pi/2 [x]` is, (Here `[x]` denotes greatest integer `lt= x`)

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of f(x)=sin backslash(pi)/(2)[x] is,(Here [x] denotes greatest integer <=x)

The range of f(x)=[sin{x}], where [x] denotes greatest integer function

The domain of the function f(x) =[x]sin pi/[x+1] , where [] denote greatest integer function is:

The function f(x) = {x} sin (pi [x]) , where [.] denotes the greatest integer function and {.} is the fraction part function , is discontinuous at

The range of f(x)=(sin pi [x^(2)+1])/(x^(4)+1) is , where [.] is greatest integer function

The function f(x)={x} sin (pi[x]) , where [.] denotes the greatest integer function and {.} is the fractional part function, is discontinuous at

The range of function f(x)=[[x]-x]+sin^(2)x , where [.] denotes the greatest integer function, is.

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :