Home
Class 12
MATHS
If y=logsqrt((1-tanx)/(1+tanx)) , prove ...

If `y=logsqrt((1-tanx)/(1+tanx))` , prove that `(dy)/(dx)=-sec2x` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(1-tanx)/(1+tanx) , prove that (dy)/(dx)=(-2)/(1+sin2x) .

If y=sqrt((1+tanx)/(1-tanx))," then: "(dy)/(dx)=

If y=sqrt((1+tanx)/(1-tanx))," then: "(dy)/(dx)=

Find (dy)/(dx) , when If y = sqrt((sec x - tanx)/(sec x + tanx)) , show that (dy)/(dx) = sec x (tanx - sec x) .

If y=sqrt(tanx+sqrt(tanx+sqrt(tanx+\ dotto\ oo))) , prove that (dy)/(dx)=(s e c^2x)/(2y-1)

If y=(tanx)^((tanx)^((tanx)^...oo)), then prove that (dy)/(dx)=2 at x=(pi)/(4).

If y=(tanx)^((tanx)^((tanx)^...oo)), then prove that (dy)/(dx)=2 at x=(pi)/(4).

If y = {(1-tanx)/(1+tanx)} , show that (dy)/(dx) = (-2)/((1+sin2x)) .

If y=e^(sinx)+(tanx)^(x)," prove that "(dy)/(dx)=e^(sinx)cosx+(tanx)^(x)[2x" cosec "2x+log tanx].