Home
Class 12
MATHS
If alpha = pi/7, then find the value of ...

If `alpha = pi/7,` then find the value of `(1/(cosalpha)+(2cosalpha)/(cos2alpha)).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha=(pi)/(7) then find the value of ((1)/(cos alpha)+(2cos alpha)/(cos2 alpha))

If alpha is in first quadrant such that tan^(2)alpha=(8)/(7) , then the value of ((1+sinalpha)(1-sinalpha))/((1+cosalpha)(1-cosalpha))

If alpha+beta=pi/2 , then the maximum value of cosalpha cos beta is:

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^(-1)(tanalpha)+sin^(-1)(sinalpha)+cos^(-1)(cosalpha) is equal to

If alpha and beta are the roots of x^2-px+q=0, then the value of |[1,cos(beta-alpha),cosalpha],[cos(alpha-beta),1,cosbeta],[cosalpha,cosbeta,1]| is