Home
Class 12
MATHS
If z^2+z+1=0 where z is a complex number...

If `z^2+z+1=0` where `z` is a complex number, then the value of `(z+1/z)^2+(z^2+1/z^2)^2+....+(z^6+1/z^6)^2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If z ^(2) + z + 1 = 0, where z is a complex number, then the value of (z + (1)/(z)) ^(2) + (z ^(2) + (1)/( z ^(2))) ^(2) + (z ^(3) + (1)/(z ^(3))) ^(2) +...( z ^(6) + (1)/(z ^(6)) )^(2) is

If z^(2)+z+1=0 where z is a complex number, then the value of (z+(1)/(z))^(2)+(z^(2)+(1)/(z^(2)))^(2)+(z^(3)+(1)/(z^(2)))^(2)+..........+(z^(6)+(1)/(z^(6)))^(2)

If z^(2)+z+1=0 , where z is a complex number, then the value of (z+(1)/(z))^(2)+(z^(2)+(1)/(z^(2)))^(2)+(z^(3)+(1)/(z^(3)))^(2)+....+(z^(6)+(1)/(z^(6)))^(2) is

If z^(2)+z+1=0 , where z is a complex number, then the value of (z+(1)/(z))^(2)+(z^(2)+(1)/(z^2))^(2)+(z^(3)+(1)/(z^3))^(2)+"……"+(z^(6)+(1)/(z^6))^(2) is

If z^2+z+1= 0 where z is a complex number, then the value of (z+frac{1}{z})^2+(z^2+frac{1}{z^2})^2+(z^3+frac{1}{z^3})^2+…....+(z^6+frac{1}{z^6})^2 is

If z^(2) + z + 1 = 0 , where z is a complex number , prove that ( z + 1/z)^(2) + ( z^(2) + 1/z^(2)) + (z^(3) + 1/z^(3))^(2) + (z^(4) + 1/z^(4))^(2) + (z^(5) + 1/z^(5)) ^(2) + ( z^(6) + 1/z^(6)) = 12 .

If z^(2) + z + 1 = 0 where z is a complex num ber, then (z+(1)/(z))^(2)+(z^(2)+(1)/(z^(2)))^(2)+(z^(3)+(1)/(z^(3)))^(2) equal

if z^2+z+1=0 , then the value of (z+1/z)^2+(z^2+1/z^2)^2+(z^3+1/z^3)^2+......+(z^21+1/z^21)^2 is

For any two complex numbers z_(1),z_(2) the values of |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2) , is