Home
Class 11
MATHS
If the expansion in powers of x of the f...

If the expansion in powers of `x` of the function `1//[(1-a x)(1-b x)]` is a`a_0+a_1x+a_2x^2+a_3x^3+ ,t h e na_n i s` `(b^n-a^n)/(b-a)` b. `(a^n-b^n)/(b-a)` c. `(b^(n+1)-a^(n+1))/(b-a)` d. `(a^(n+1)-b^(n+1))/(b-a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the expansion in powers of x of the function 1//[(1-a x)(1-b x)] is a a_0+a_1x+a_2x^2+a_3x^3+ ,t h e na_n i s a. (b^n-a^n)/(b-a) b. (a^n-b^n)/(b-a) c. (b^(n+1)-a^(n+1))/(b-a) d. (a^(n+1)-b^(n+1))/(b-a)

If the expansion in powers of x of the function 1/[(1-a x)(1-b x)] is a a_0+a_1x+a_2x^2+a_3x^3+ ,t h e na_n i s a. (b^n-a^n)/(b-a) b. (a^n-b^n)/(b-a) c. (b^(n+1)-a^(n+1))/(b-a) d. (a^(n+1)-b^(n+1))/(b-a)

If the expansion in powers of x of the function 1//[(1-a x)(1-b x)] is a a_0+a_1x+a_2x^2+a_3x^3+ ,then coefficient of x^n is (b^n-a^n)/(b-a) b. (a^n-b^n)/(b-a) c. (b^(n+1)-a^(n+1))/(b-a) d. (a^(n+1)-b^(n+1))/(b-a)

If the expansion in powers of x of the function 1/[(1-ax)(1-bx)] is a a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+..., then a_(n) is (b^(n)-a^(n))/(b-a) b.(a^(n)-b^(n))/(b-a) c.(b^(n+1)-a^(n+1))/(b-a) d.(a^(n+1)-b^(n+1))/(b-a)

If (1-px)^-1/((1-qx))=a_0+a_1x+a_2x^2+a_3x^3+....... then a_n=

The cofficient of x^(n) in (x)/((x-a)(x-b)) is (a^(n)-b^(n))/(a-b)xx(1)/(a^(n)b^(n))

(d^n)/(dx^n)(logx)=? (a) ((n-1)!)/(x^n) (b) (n !)/(x^n) (c) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

(d^n)/(dx^n)(logx)= (a) ((n-1)!)/(x^n) (b) (n !)/(x^n) (c) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

(d^n)/(dx^n)(logx)=? (a) ((n-1)!)/(x^n) (b) (n !)/(x^n) (c) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)