Home
Class 11
MATHS
If the two roots of the equation (lambda...

If the two roots of the equation `(lambda-1)(x^2 + x+1)^2-(lambda+1)(x^4 + x^2 + 1)=0` are real and distin then `lambda` lies in the interval

Promotional Banner

Similar Questions

Explore conceptually related problems

(B) (2, 9/4) If two roots of the equation (a-1) (x^2 + x + 1 )^2-(a + 1) (x^4 + x^2 + 1) = 0 are real and distinct, then a lies in the interval

(B) (2, 9/4) If two roots of the equation (a-1) (x^2 + x + 1 )^2-(a + 1) (x^4 + x^2 + 1) = 0 are real and distinct, then a lies in the interval

(B) (2,9/4 ) If two roots of the equation (a-1)(x^(2)+x+1)^(2)-(a+1)(x^(4)+x^(2)+1)=0 are real and distinct,then a lies in the interval

If the two roots of the equation (lambda-2)(x^2+x+1)^2-(lambda+2)(x^4+x^2+1) are real and equal for lambda=lambda_1,lambda_2 then lambda_1+lambda_2=0 (b) |lambda_1-lambda_2|=6 (c) lambda_1+lambda_2=32 (d) all of these

If the two roots of the equation (lambda-2)(x^2+x+1)^2-(lambda+2)(x^4+x^2+1) are real and equal for lambda=lambda_1,lambda_2 then lambda_1+lambda_2=0 (b) |lambda_1-lambda_2|=6 (c) lambda_1+lambda_2=32 (d) all of these

If sin 2x cos 2x cos 4x=lambda has a solution then lambda lies in the interval

If sin2x cos2x cos4x=lambda has a solution then lambda lies in the interval

If ( lambda^(2) + lambda - 2)x^(2)+(lambda+2)x lt 1 for all x in R , then lambda belongs to the interval :

If ( lambda^(2) + lambda - 2)x^(2)+(lambda+2)x lt 1 for all x in R , then lambda belongs to the interval :

If the equation sin^(-1)(x^2+x +1)+cos^(-1)(lambda x+1)=pi/2 has exactly two solutions, then the value of lambda is