Home
Class 12
MATHS
If vec alpha and vec beta be two unit v...

If `vec alpha and vec beta` be two unit vector. The maximum value of `(|vec a+vec b|^2-|vec a-vec b|^2)/(|vec a+vec b|^2+|vec a-vec b|^2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b,vec c are three unit vectors,then the maximum value of (1)/(5)(|vec a+vec b-vec c|^(2)+|vec b+vec c-vec a|^(2)+|vec c+vec a-vec b|^(2)) is equal to:

If vec a and vec b are unit vectors such that |vec a xx vec b| = vec a . vec b , then |vec a + vec b|^(2) =

For any two non zero vectors write the value of (| vec a+ vec b|^2+| vec a- vec b|^2)/(| vec a|^2+ | vec b"|^2)

If vec a and vec b are unit vectors such that |vec a xxvec b|=vec a.vec b then |vec a-vec b|^(2) is equal to

For any two non zero vectors write the value of (|vec a+vec b|^(2)+|vec a-vec b|^(2))/(|vec a|^(2)+|vec b|^(2))

If vec a\ a n d\ vec b are unit vectors then write the value of | vec axx vec b|^2+( vec adot vec b)^2dot

If vec a\ a n d\ vec b are unit vectors then write the value of | vec axx vec b|^2+( vec adot vec b)^2dot

If vec a\ a n d\ vec b are unit vectors then write the value of | vec axx vec b|^2+( vec adot vec b)^2dot

vec a and vec b are two non-collinear vectors then the value of {(vec a)/(|vec a|^(2))-(vec b)/(|vec b|^(2))} is equal to

For any two vectors vec a and vec b ,prove that (vec a xxvec b)^(2)=|vec a|^(2)|vec b|^(2)-(vec a*vec b)^(2)