Home
Class 12
MATHS
Prove that lim(n->oo)((1^2)/(n^3)+(2^2)...

Prove that `lim_(n->oo)((1^2)/(n^3)+(2^2)/(n^3)+(3^2)/(n^3)+.....+(n^2)/(n^3))=1/3`.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nto oo)((1^(2))/(1-n^(3))+(2^(2))/(1-n^(3))+ . . . .+(n^(2))/(1-n^(3)))=

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_(n to oo) [ 1^2/n^3 + (2^2)/(n^3) + …+ ((n-1)^2)/(n^3)]

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

Evaluate: lim_(n rarr oo)((1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(4))+...+(1)/(n))

lim_(n to oo)((1)/(n^2)+(2)/(n^2)+(3)/(n^2)+"………."+(n)/(n^2)) is

Evaluate lim_(n->oo)[1^2/(n^3+1^3) + 2^2/(n^3+2^3) +3^2/(n^3+3^3)+…+1/(2n)]