Home
Class 12
MATHS
Show that the expression (tan(x+alpha))/...

Show that the expression `(tan(x+alpha))/(tan(x-alpha))` cannot lie between the values `tan^2 (pi/4-alpha)` and `tan^2(pi/4+alpha)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that for real x, (tan(x+alpha))/(tan(x-alpha)) where alpha ne pi/4, 3pi/4 cannot lies between (1- sin2 alpha)/(1+ sin 2alpha) and (1+ sin2 alpha)/(1- sin 2alpha) .

If 0 lt alpha lt (pi)/(16) and (1+tan alpha)(1+tan4alpha)=2 , then the value of alpha is equal to

If 0 lt alpha lt (pi)/(16) and (1+tan alpha)(1+tan4alpha)=2 , then the value of alpha is equal to

If alpha in (-(pi)/(2), 0) , then find the value of tan^(-1) (cot alpha) - cot^(-1) (tan alpha)

If alpha in (-(pi)/(2), 0) , then find the value of tan^(-1) (cot alpha) - cot^(-1) (tan alpha)

If alpha in (-(pi)/(2), 0) , then find the value of tan^(-1) (cot alpha) - cot^(-1) (tan alpha)

If alpha in (-(pi)/(2), 0) , then find the value of tan^(-1) (cot alpha) - cot^(-1) (tan alpha)

If alpha = (2pi )/(7) , then tan alpha tan 2 alpha + tan 2 alpha tan 4 alpha + tan 4 alpha tan alpha =