Home
Class 11
MATHS
Let f(x) = 3(cosx-sinx)^4 + 4(sin^6x + c...

Let `f(x) = 3(cosx-sinx)^4 + 4(sin^6x + cos^6x) + 6(sinx + cosx)^2-12` then `f(pi/6)-f(pi/3)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=3(cos x-sin x)^(4)+4(sin^(6)x+cos^(6)x)+6(sin x+cos x)^(2)-12 then f((pi)/(6))-f((pi)/(3)) is equal to

Prove that 3(sinx-cosx)^4+4(sin^6x+cos^6x)+6(sinx+cosx)^2=13

Prove that 3(sinx-cosx)^4+4(sin^6x+cos^6x)+6(sinx+cosx)^2=13

If f(x) = |cosx-sinx|, then f ' (pi//6) is equal to

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to