Home
Class 9
MATHS
(3^(5x)xx8 1^2xx6561)/(3^(2x))=3^7,t h e...

`(3^(5x)xx8 1^2xx6561)/(3^(2x))=3^7,t h e nx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (3^(5x)xx81^2xx6561)/(3^(2x))=3^7 , then x=

If (3^(5x)xx(81)^(2)xx6561)/(3^(2x))=3^(7) , then x =_______

If (3^(5x)x81^(2)x6561)/(3^(2x))=3^(7), then x=3 (b) -3(c)(1)/(3)(d)-(1)/(3)

If (3^(5x)*(81)^(2)*6561)/(3^(2x))=3^(7) then x=

If (3^(5x)\ xx\ 81^2\ xx\ \ 6561)/(3^(2x))=3^7, then x= (a)\ 3 (b) -3 (c) 1/3 (d) -1/3

((2^8)^2xx5^3)/(7^3xx4)

Simplify : a. [(3^(3))xx3^(4)]-:3^(4) b. 18^(6)-:3^(12) c. [(5^(6))^(9)xx(5^(15))^(5)]-[(5^(13))^(5)xx(5^(4))^(16)] d. (3^(5)xx10^(5)xx25)-:(5^(7)xx6^(5)) e. ((2)/(b))^(18)xxb^(12)xx(3^(4))^(3) f. [(2^(4))^(2)xx2^(12)]-:4^(2) g. 12^(8)-:3^(6) h. [(7^(7))^(8)xx(7^(9))^(5)]-[(7^(11))^(6)xx(7^(7))^(5)] i. (25^(2)xxp^(4)xxq^(8))-:(5^(3)xxp^(4)xxq^(7)) j. ((a)/(3))^(24)xx2^(8)xx(3^(6))^(4)

Find the derivative of f(x)={(x-1)/(2x^2-7x+5)w h e nx!=1=1/3w h e nx=1a tx=1.

If x=2^(2)xx3^(3)xx7^(2),y=2^(3)xx3^(2)xx5xx7 , then find HCF (x,y)

Simplify. (i) (25 xx t^(-4))/(5^3 xx 10 xx t^(-8)) (t != 0) (ii) (3^(-5) xx 10^(-5) xx 125)/(5^(-7) xx 6^(-5))