Home
Class 10
MATHS
If tanA=ntanB and sinA=msinB, prove that...

If tanA=ntanB and sinA=msinB, prove that `cos^2A=[m^2-1]/[n^2-1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan A =ntanB , sinA =msinB , prove that , cos^2A=(m^2-1)/(n^2-1) .

If tanA=ntanBandsinA=msinB then sec^(3)A((m^(2)-1)/(n^(2)-1))^((3)/(2) =?

If tanA=n tan B and sinA=m sin B, then the value of cos^2 A is यदि tanA=n tan B और sinA=m sin B, तो cos^2 A का मान है

If tanA+sinA=m and tanA-sinA=n , then prove that m^(2)-n^(2)=4sqrt(mn) .

If tanA+sinA=m and tanA-sinA=n , then prove that m^(2)-n^(2)=4sqrt(mn) .

If 3tanA tanB=1 , then prove that 2cos(A+B)=cos(A-B)

If tanA=sqrt2-1 then prove that sinA cosA=1/(2sqrt2)

Prove the following:If tanA=1/2,tanB=1/3 ,prove that cos2A=sin2B

Prove that: (sin2A)/(1+cos2A)=tanA

Prove that: (sin2A)/(1+cos2A)=tanA