Home
Class 11
MATHS
y=xsqrt(a^2+x^2)+a^2log(x+sqrt(a^2+x^2))...

`y=xsqrt(a^2+x^2)+a^2log(x+sqrt(a^2+x^2))`, then show that`(d y)/(d x)=2sqrt(a^2+x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=xsqrt(a^(2)+x^(2))+a^(2)log(x+sqrt(a^(2)+x^(2))) , then show that dy/dx=2sqrt(a^(2)+x^(2)) .

If y=(x)/(2)sqrt(x^(2)-a^(2))-(a^(2))/(2)log(x+sqrt(x^(2)-a^(2))) show that (dy)/(dx)=sqrt(x^(2)-a^(2))

If y= (x)/(2) sqrt(x^(2)-a^(2))-(a^(2))/(2) log (x+sqrt(x^(2)-a^(2))) , show that, (dy)/(dx)=sqrt(x^(2)-a^(2))

If x-sqrt(a^(2)-y^(2))=a" log"(a-sqrt(a^(2)-y^(2)))/(y) , show that, (dy)/(dx)=(y)/(sqrt(a^(2)-y^(2)))

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If y=log(sqrt(x+sqrt(x^(2)+a^(2))))" then: "(dy)/(dx)=

If y=log(x+sqrt(x^2+a^2)) , then (d^2y)/(dx^2) is equal to

If y = sin^(-1) x^2 sqrt(1 - x^2) + xsqrt(1 - x^4) , show that (dy)/(dx) - (2x)/(sqrt(1 - x^4)) = 1/(sqrt(1 - x^2))