Home
Class 12
MATHS
The value of sum(r=1)^10 r* (nCr)/(nC(r...

The value of `sum_(r=1)^10 r* (nC_r)/(nC_(r-1)` equal is to

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of sum_(r=1)^n r* (nC_r)/(nC_(r-1)

The value of sum_(r=0)^(n)r(n-r)(nC_(r))^(2) is equal to

Find the sum sum_(r=1)^n r^n (^nC_r)/(^nC_(r-1)) .

Find the sum sum_(r=1)^n r^n (^nC_r)/(^nC_(r-1)) .

If n is a positive integer and C_r = ""^nC_r then find the value of sum_(x = 1)^n r^2 ((C_r)/(C_(r - 1)) )

sum_(r=0)^n(-2)^r*(nC_r)/((r+2)C_r) is equal to

If n is a positive integer and C_4 = ""^nC_r then find the value of sum_(x = 1)^n r^2 ((C_r)/(C_(r - 1)) )

The value of sum_(r=0)^(n-1)(nC_(r))/(nC_(r)+^(n)C_(r+1)) is eqaul to

Find the sum of sum_(r=1)^(n)(r^(n)C_(r))/(^nC_(r-1))

The value of sum_(r=0)^(3n-1)(-1)^r 6nC_(2r+1)3^r is