Home
Class 12
MATHS
let y=t^(10)+1, and x=t^8+1, then (d^2y)...

let `y=t^(10)+1,` and `x=t^8+1,` then `(d^2y)/(dx^2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

let y=t^(10)+1, and x=t^(8)+1, then (d^(2)y)/(dx^(2)) is

"Let "y=t^(10)+1 and x=t^(8)+1." Then "(d^(2)y)/(dx^(2)) is

"Let "y=t^(10)+1 and x=t^(8)+1." Then "(d^(2)y)/(dx^(2)) is

"Let "y=t^(12)+1 and x=t^(6)+1." Then "(d^(2)y)/(dx^(2)) is

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=log t , t gt 0 and y=1/t , then (d^(2)y)/(dx^(2)) , is

If x=log t , t gt 0 and y=1/t , then (d^(2)y)/(dx^(2)) , is