Home
Class 11
MATHS
The value of (a+bomega+comega^2)/(b+come...

The value of `(a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^2)/(c+aomega+bomega^2)` (where `'omega'` is the imaginary cube root of unity), is a.`-omega` b. `omega^2` c. `1` d. `-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

(a-b)(aomega-bomega^(2))(aomega^(2)-bomega)

If p=a+bomega+comega^2,q=b+comega+aomega^2,a n dr=c+aomega+bomega^2,w h e r ea ,b ,c!=0a n domega is the complex cube root of unity, then

Prove that a^3 + b^3 + c^3 – 3abc = (a + b + c) (a + bomega + comega^2) (a + bomega^2 + "c"omega) , where omega is an imaginary cube root of unity.

If x=a+b, y=aomega+bomega^2 and z=aomega^2+bomega where omega is an imaginary cube root of unity, prove that x^2+y^2+z^2=6ab .

If x=a+b, y=aomega+bomega^2 and z=aomega^2+bomega where omega is an imaginary cube root of unity, prove that x^2+y^2+z^2=6ab .

If x=a+b,y=aomega+bomega^(2),z=aomega^(2)+bomega then xyz

If omega is a cube root of unity, prove that (a+bomega+comega^2)/(c+aomega+bomega^2)=omega^2

(a+2b)^(2)+(aomega+2bomega^(2))^(2)+(aomega^(2)+2bomega)^(2)