Home
Class 12
MATHS
The area enclosed by the curves y=sinx+c...

The area enclosed by the curves `y=sinx+cosx and y=|cosx−sinx|` over the interval `[0,pi/2]` is (a) `4(sqrt2-1)` (b) `2sqrt2(sqrt2-1)` (c) `2(sqrt2+1)` (d) `2sqrt2(sqrt2+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The area enclosed by the curve y=sinx+cosxa n dy=|cosx-sinx| over the interval [0,pi/2] is (a)4(sqrt(2)-2) (b) 2sqrt(2) ( sqrt(2) -1) (c)2(sqrt(2) +1) (d) 2sqrt(2)(sqrt(2)+1)

The area enclosed by the curve y=sinx+cosxa n dy=|cosx-sinx| over the interval [0,pi/2] is (a)4(sqrt(2)-2) (b) 2sqrt(2) ( sqrt(2) -1) (c)2(sqrt(2) +1) (d) 2sqrt(2)(sqrt(2)+1)

The area enclosed by the curve y=sinx+cosxa n dy=|cosx-sinx| over the interval [0,pi/2] is (a)4(sqrt(2)-2) (b) 2sqrt(2) ( sqrt(2) -1) (c)2(sqrt(2) +1) (d) 2sqrt(2)(sqrt(2)+1)

The area enclosed by the curve y=sin x+cos x and y=|cos x-sin x| over the interval [0,(pi)/(2)] is 4(sqrt(2)-2) (b) 2sqrt(2)(sqrt(2)-1)2(sqrt(2)+1)(d)2sqrt(2)(sqrt(2)+1)

The area of the figure bounded by the curves y=cosx and y=sinx and the ordinates x=0 and x=pi/4 is (A) sqrt(2)-1 (B) sqrt(2)+1 (C) 1/sqrt(2)(sqrt(2)-1) (D) 1/sqrt(2)

The area formed by triangular shaped region bounded by the curves y=sinx, y=cosx and x=0 is (A) sqrt(2)-1 (B) 1 (C) sqrt(2) (D) 1+sqrt(2)

The area of the region bounded by the lines x=0, x=pi/2 and f(x)=sinx, g(x)=cosx is (A) 2(sqrt(2)+1) (B) sqrt(3)-1 (C) 2(sqrt(3)-1) (D) 2(sqrt(2)-1)

Solve sinx +cosx=sqrt2 .

sinx + cosx = 1/sqrt(2)

Solve: sinx-cosx=-sqrt2