Home
Class 12
MATHS
A derivable function f(x) satisfies the ...

A derivable function `f(x)` satisfies the relation `f(x)=int_0^1 xf(t) dt+int_0^x x^2f(t) dt`. The value of `(2f'(1))/(f(1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

A Function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt* Then (a)f(0) 0