Home
Class 12
MATHS
The AM of y coordinates of P and Q is th...

The AM of y coordinates of P and Q is the y coordinate of the point of intersection of tangents at P and parabola.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight line x - 2y + 1 = 0 intersects the circle x^2 + y^2 = 25 at points P and Q, then find the coordinates of the point of intersection of the tangents drawn at P and Q to the circle x^2 + y^2 = 25 .

If the straight line x - 2y + 1 = 0 intersects the circle x^2 + y^2 = 25 at points P and Q, then find the coordinates of the point of intersection of the tangents drawn at P and Q to the circle x^2 + y^2 = 25 .

If the straight line x - 2y + 1 = 0 intersects the circle x^2 + y^2 = 25 at points P and Q, then find the coordinates of the point of intersection of the tangents drawn at P and Q to the circle x^2 + y^2 = 25 .

If the straight line x - 2y + 1 = 0 intersects the circle x^2 + y^2 = 25 at points P and Q, then find the coordinates of the point of intersection of the tangents drawn at P and Q to the circle x^2 + y^2 = 25 .

If y_(1),y_(2) are the ordinates of two points P and Q on the parabola and y_(3) is the ordinate of the point of intersection of tangents at P and Q then

The straight line x-2y+1=0 intersects the circle x^(2)+y^(2)=25 in points P and Q the coordinates of the point of intersection of tangents drawn at P and Q to the circle is

The straight line x-2y+1=0 intersects the circle x^(2)+y^(2)=25 in points P and Q the coordinates of the point of intersection of tangents drawn at P and Q to the circle is

If the straight line x-2y+1=0 intersects the circle x^(2)+y^(2)=25 at points P and Q, then find the coordinates of the point of intersection of the tangents drawn at P and Q to the circle x^(2)+y^(2)=25