Home
Class 12
MATHS
int[-pi/4]^[pi/4](2tan^-1e^x-pi/2)/(1+x^...

`int_[-pi/4]^[pi/4](2tan^-1e^x-pi/2)/(1+x^2)` is equal to a. `pi/2` b. `pi^2/4` c. `e^(-pi^2/2)` d. 0

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-pi/4)^(pi/4)(e^(x)*sec^(2)xdx)/(e^(2x)-1) is equal to

int_0^(pi//2)xsinx\ dx is equal to a. pi//2 b. pi//4 c. pi d. 1

int_0^(pi//2)xsinx\ dx is equal to pi//2 b. pi//4 c. pi d. 1

int_0^(pi//2)1/(1+cot^3x)dx is equal to a 0 b. 1 c. pi//2 d. pi//4

int_0^(pi//2)1/(1+cot^3x)dx is equal to 0 b. 1 c. pi//2 d. pi//4

int_(-pi//4)^(pi//4)(e^(x)(x^(3)sinx))/(e^(2x)-1)dx equals

Evaluate: int_(-pi/4)^( pi/4)(tan^(2)x)/(1+e^(x))dx

int_(-pi//4)^(pi//4)(e^(x)x sin x)/(e^(2x)-1)dx=

int_(-pi//2)^(pi//2) cos x dx is equal to A) 0 B) 1 C) 2 D) 4

int_(0) ^(pi//2) (dx)/( 1 + tan^(3) x) is equal to a)1 b) pi c) pi/2 d) pi/4