Home
Class 12
MATHS
Tangent P Aa n dP B are drawn from the p...

Tangent `P Aa n dP B` are drawn from the point `P` on the directrix of the parabola `(x-2)^2+(y-3)^2=((5x-12 y+3)^2)/(160)` . Find the least radius of the circumcircle of triangle `P A Bdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Tangent PA and PB are drawn from the point P on the directrix of the parabola (x-2)^(2)+(y-3)^(2)=((5x-12y+3)^(2))/(160). Find the least radius of the circumcircle of triangle PAB.

Tangents P Aa n dP B are drawn to x^2+y^2=a^2 from the point P(x_1, y_1)dot Then find the equation of the circumcircle of triangle P A Bdot

Tangents P Aa n dP B are drawn to x^2+y^2=a^2 from the point P(x_1, y_1)dot Then find the equation of the circumcircle of triangle P A Bdot

Tangents PA and PB are drawn to x^2+y^2=a^2 from the point P(x_1, y_1)dot Then find the equation of the circumcircle of triangle P A Bdot

Tangents PA and PB are drawn to x^2+y^2=a^2 from the point P(x_1, y_1)dot Then find the equation of the circumcircle of triangle P A Bdot

If tangents P Qa n dP R are drawn from a variable point P to thehyperbola (x^2)/(a^2)-(y^2)/(b^2)=1,(a > b), so that the fourth vertex S of parallelogram P Q S R lies on the circumcircle of triangle P Q R , then the locus of P is x^2+y^2=b^2 (b) x^2+y^2=a^2 x^2+y^2=a^2-b^2 (d) none of these

If tangents P Qa n dP R are drawn from a variable point P to thehyperbola (x^2)/(a^2)-(y^2)/(b^2)=1,(a > b), so that the fourth vertex S of parallelogram P Q S R lies on the circumcircle of triangle P Q R , then the locus of P is (a) x^2+y^2=b^2 (b) x^2+y^2=a^2 (c) x^2+y^2=a^2-b^2 (d) none of these

If tangents P Qa n dP R are drawn from a variable point P to thehyperbola (x^2)/(a^2)-(y^2)/(b^2)=1,(a > b), so that the fourth vertex S of parallelogram P Q S R lies on the circumcircle of triangle P Q R , then the locus of P is x^2+y^2=b^2 (b) x^2+y^2=a^2 x^2+y^2=a^2-b^2 (d) none of these

If tangents P Qa n dP R are drawn from a variable point P to thehyperbola (x^2)/(a^2)-(y^2)/(b^2)=1,(a > b), so that the fourth vertex S of parallelogram P Q S R lies on the circumcircle of triangle P Q R , then the locus of P is (a) x^2+y^2=b^2 (b) x^2+y^2=a^2 (c) x^2+y^2=a^2-b^2 (d) none of these