Home
Class 12
MATHS
If the line x-y-1 = 0 intersect the par...

If the line `x-y-1 = 0` intersect the parabola `y^2 = 8x` at P and Q, then find the point on intersection of tangents `P and Q`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If line x-2y-1=0 intersects parabola y^(2)=4x at P and Q, then find the point of intersection of normals at P and Q.

If line x-2y-1=0 intersects parabola y^(2)=4x at P and Q, then find the point of intersection of normals at P and Q.

If line x-2y-1=0 intersects parabola y^(2)=4x at P and Q, then find the point of intersection of normals at P and Q.

If line x-2y-1=0 intersects parabola y^(2)=4x at P and Q, then find the point of intersection of normals at P and Q.

If line x-2y-1=0 intersects parabola y^(2)=4x at P and Q, then find the point of intersection of normals at P and Q.

If normal of circle x^(2)+y^(2)+6x+8y+9=0 intersect the parabola y^(2)=4x at P and Q then find the locus of point of intersection of tangent's at P and Q.

If 3x+4y=12 intersect the ellipse x^2/25+y^2/16=1 at P and Q , then point of intersection of tangents at P and Q.

The line 4x -7y + 10 = 0 intersects the parabola y^(2) =4x at the points P and Q. The coordinates of the point of intersection of the tangents drawn at the points P and Q are

The line 4x -7y + 10 = 0 intersects the parabola y^(2) =4x at the points P and Q. The coordinates of the point of intersection of the tangents drawn at the points P and Q are

The straight line x-2y+1=0 intersects the circle x^(2)+y^(2)=25 in points P and Q the coordinates of the point of intersection of tangents drawn at P and Q to the circle is