Home
Class 12
MATHS
If PQ are the mid points of diagonal AC ...

If PQ are the mid points of diagonal AC and BD respectively of a quadrilateral ABCD, then prove that `vec (AB) + vec (AD) + vec (CB) + vec (CD)` = 4 `vec (PQ)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If M and N are the mid-points of the diagonals AC and BD respectively of a quadrilateral ABCD,then the of vec AB+vec AD+vec CB+vec CD equals

A parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC) '

In a parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC)

If AC and BD are the diagonals of a quadrilateral ABCD, prove that its area is equal to 1/2 |vec (AC) xx vec (BD)| .

In a quadrilateral ABCD, vec(AB) + vec(DC) =

In a quadrilateral ABCD, vec(AB) + vec(DC) =

If ABCD is a quadrilateral and E and F are the midpoints of AC and BD respectively, then prove that vec(AB)+vec(AD)+vec(CB)+vec(CD)=4vec(EF) .

If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

If ABCD is a parallelogram then vec(AB) + vec(AD) + vec(CB) + vec(CD) = …………………… .