Home
Class 11
CHEMISTRY
For a hypothetical hydrogen like atom, t...

For a hypothetical hydrogen like atom, the potential energy of the system is given by `U(r)=(-Ke^(2))/(r^(3))`, where r is the distance between the two particles. If Bohr's model of quantization of angular momentum is applicable then velocity of particle is given by:

Promotional Banner

Similar Questions

Explore conceptually related problems

Potential energy of a system of particles is U(alpha)/(3r^(3))-(beta)/(2r^(2)), where r is distance between the particles. Here alpha and beta are positive constants. Which of the following are correct for the system?

Potential energy of a system of particles is U =(alpha)/(3r^(3))-(beta)/(2r^(2)), where r is distance between the particles. Here alpha and beta are positive constants. Which of the following are correct for the system?

A small particle of mass m moves in such a way that the potential energy U=(1)/(2)m omega^(2)r^(2) , where omega is a constant and r is the distance of the particle from the origin. Assuming Bohr's model of quantisation of angular momentum and circular orbits. Find the radius of the n^(th) orbit.

A small particle of mass m move in such a way the potential energy U = (1)/(2) m^(2) omega^(2) r^(2) where omega is a constant and r is the distance of the particle from the origin. Assuming Bohr's model of quantization of angular momentum and circular orbits , show that radius of the nth allowed orbit is proportional to √n

A small particle of mass m move in such a way the potential energy U = (1)/(2) m^(2) omega^(2) r^(2) when a is a constant and r is the distance of the particle from the origin Assuming Bohr's model of quantization of angular momentum and circular orbits , show that radius of the nth allowed orbit is proportional to in

A small particle of mass m move in such a way the potential energy (U = (1)/(2) m^(2) omega^(2) r^(2)) when a is a constant and r is the distance of the particle from the origin Assuming Bohr's model of quantization of angular momentum and circular orbits , show that radius of the nth allowed orbit is proportional to in

A small particle of mass m move in such a way the potential energy U = (1)/(2) m^(2) omega^(2) r^(2) when a is a constant and r is the distance of the particle from the origin Assuming Bohr's model of quantization of angular momentum and circular orbits , show that radius of the nth allowed orbit is proportional to in

The interaction energy of London forces between two particles is proportional to r^x , where r is the distance between the particles. The value of x is :