Home
Class 12
PHYSICS
A particle of charge per unit mass alpha...

A particle of charge per unit mass `alpha` is released from origin with a velocity `vecv=v_(0)hati` uniform magnetic field `vecB=-B_(0)hatk`. If the particle passes through `(0,y,0)`, then `y` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

A proton is fired from origin with velocity vecv=v_0hatj+v_0hatk in a uniform magnetic field vecB=B_0hatj .

Choose the correct option: A particle of charge per unit mass alpha is released from origin with a velocity vecv=v_(0)hati in a magnetic field vec(B)=-B_(0)hatk for xle(sqrt(3))/2 (v_(0))/(B_(0)alpha) and vec(B)=0 for xgt(sqrt(3))/2 (v_(0))/(B_(0)alpha) The x -coordinate of the particle at time t((pi)/(3B_(0)alpha)) would be

A particle of charge per unit mass alpha is released from origin with a velocity vecv=v_(0)hati in a magnetic field vec(B)=-B_(0)hatk for xle(sqrt(3))/2 (v_(0))/(B_(0)alpha) and vec(B)=0 for xgt(sqrt(3))/2 (v_(0))/(B_(0)alpha) The x -coordinate of the particle at time t((pi)/(3B_(0)alpha)) would be

A particle of charge per unit mass alpha is released from the origin with velocity v=v_(0)hati in the magnetic field vecB=-B_(0)hatk for A cup of tea cools from 80^(@)C" to "60^(@)C in 40 seconds. The ambient temperature is 30^(@)C . In cooling from 60^(@)C" to "50^(@)C , it will take time: x le (sqrt3)/(2)(v_(0))/(B_(0)alpha) and vecB=0" for "x gt (sqrt3)/(2)(v_(0))/(B_(0)alpha) The x - coordinate of the particle at time t(gt(pi)/(3B_(0)alpha)) would be

A particle of charge per unit mass alpha is released from origin with velocity vec v = v_0 hat i in a magnetic field vec B = -B_0 hat k for x le sqrt 3/2 v_0/(B_0 alpha) and vec B = 0 for x gt sqrt 3/2 v_0/(B_0 alpha) The x-coordinate of the particle at time t(gt pi/(3B_0 alpha)) would be

A charged particle of specific charge (charge/mass) alpha released from origin at time t=0 with velocity vec v = v_0 (hat i + hat j) in uniform magnetic field vec B = B_0 hat i. Coordinates of the particle at time t= pi//(B_0 alpha) are

A charge praticule of sepeific charge (charge/ mass ) alpha is realsed from origin at time t=0 with velocity v= v_(0)(hati+hatj) in unifrom magnetic fields B= B_(0)hati . Co-ordinaties of the particle at time t = (pi)/(B_(0)alpha) are

A charge praticule of sepeific charge (charge/ mass ) alpha is realsed from origin at time t=0 with velocity v= v_(0)(hati+hatj) in unifrom magnetic fields B= B_(0)hati . Co-ordinaties of the particle at time t = (pi)/(B_(0)alpha) are

A particle of specific charge 'alpha' is projected from origin at t=0 with a velocity vec(V)=V_(0) (hat(i)-hat(k)) in a magnetic field vec(B)= -B_(0)hat(k) . Then : (Mass of particle =1 unit)