Home
Class 12
MATHS
The solution set of x in (-pi,pi) for th...

The solution set of `x in (-pi,pi)` for the inequality `sin2x+1lt=cosx+2sinx` is: `x in [0,pi/6]` (b) `x in [pi/6,(5pi)/6]uu{0}` `x in [-pi/6,(6pi)/6]` (d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution set of x in(-pi,pi) for the inequality sin2x+1<=cos x+2sin x is: x in[0,(pi)/(6)]( b) x in[(pi)/(6),(5 pi)/(6)]uu{0}x in[-(pi)/(6),(6 pi)/(6)] (d) None of these

Set of values of x lying in [0, 2pi] satisfying the inequality |sin x | gt 2 sin^(2) x contains a. (0, pi/6) uu (pi, (7pi)/(6)) b. (0, (7pi)/(6)) c. pi/6 d. None of these

The solution(s) of the equation cos2x sin6x=cos3x sin5x in the interval [0,pi] is/are pi/6 (b) pi/2 (c) (2pi)/3 (d) (5pi)/6

sin^-1 (sin ((7pi)/6))= (A) (7pi)/6 (B) pi/6 (C) -pi/6 (D) none of these

sin^-1 (sin ((7pi)/6))= (A) (7pi)/6 (B) pi/6 (C) -pi/6 (D) none of these

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is [0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a) [0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a) [0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a)[0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

The range of f(x)=sin^(-1)((x^(2)+1)/(x^(2)+2)) is [0,(pi)/(2)] (b) (0,(pi)/(6))( c) [(pi)/(6),(pi)/(2)](d) none of these