Home
Class 11
MATHS
Find the set of values of alpha in the i...

Find the set of values of `alpha` in the interval [ `pi/2,3pi/2`], for which the point (`sin alpha, cos alpha`)does not exist outside the parabola `2 y^2 + x - 2 = 0`

Text Solution

Verified by Experts

`2y^2+x-2=0`
`f(x,y)=2y^2+x-2`
`f(0,0)=0+0-2<0`
`f(h,k)=2k^2+h-2<=0`
`2cos^alpha+sinalpha-2<=0`
`2-2sin^2alpha+sinalpha-2<=0`
`sinalpha(2sinalpha-1)>=0`
`alpha in [pi/2,5/6pi]uu[pi,3/2pi]`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of value of alpha in the interval [-pi,0] satisfying sin alpha +int_(alpha )^(2alpha) cos 2 x dx =0 , then

The number of value of alpha in the interval [-pi,0] satisfying sin alpha +int_(alpha )^(2alpha) cos 2 x dx =0 , then

The number of value of alpha in the interval [-pi,0] satisfying sin alpha +int_(alpha )^(2alpha) cos 2 x dx =0 , then

The number of value of alpha in the interval [-pi,0] satisfying sin alpha +int_(alpha )^(2alpha) cos 2 x dx =0 , then

The number of value of alpha in the interval [-pi,0] satisfying sin alpha +int_(alpha )^(2alpha) cos 2 x dx =0 , then

The number of values of alpha in [0,2 pi] for which 2sin^(3)alpha-7sin^(2)alpha+7sin alpha=2, is:

The number of values of alpha in [0,2pi] for whilch 2sin^(3)alpha-7sin^(2)alpha+7 sin alpha=2 , is

The coordinates of the point at which the line x cos alpha + y sin alpha + a sin alpha = 0 touches the parabola y^(2) = 4x are