Home
Class 12
MATHS
prove that |(-2a,a+b,a+c),(b+a,-2b,b+c),...

prove that `|(-2a,a+b,a+c),(b+a,-2b,b+c),(c+a,c+b,-2c)| =4(a+b)(b+c)(c+a)`

Text Solution

Verified by Experts

Let
`Delta =|{:(-2a,,a+b,,a+c),(b+a,,-2b,,b+c),(c+a,,c+b,,-2c):}|`
Putting `a+b =0 " or " b=-a ` we get
` Delta =|{:(-2a,,0,,a+c),(0,,2a,,c-a),(c+a,,c-a,,-2c):}|`
Expanding along `R_(1)`
`=-2a {-4ac -(c-a)^(2)}-0 +(a+c) {0 -2a(c+a)}`
`=2a(c+a)^(2) -2a(c+a)^(2)`
`=0`
Hence a+b is a factor of `Delta`
Similarly b+c and c+a are the factors of `Delta`
on expansion of determinant we can see that each terms of the determinaint is a homogeneous expression in a,b,c of degree 3 and also `R.H.S.` is a homogeneous expression of degree 3.
`|{:(-2a,,a+b,,a+c),(b+a,,-2b,,b+c),(c+a,,c+b,,-2c):}| =4 (a+b)(b+c) (c+a)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that A=|{:(-2a,a+b,c+a),(a+b,-2b,b+c),(c+a,c+b,-2c):}|=4(a+b)(b+c)(c+a)

Prove that abs((-2a,a+b,c+a),(a+b,-2b,b+c),(c+a,c+b,-2c))=4(b+c)(c+a)(a+b)

Prove that, |(2a, a-b-c,2a),(2b,2b,b-c-a),(c-a-b,2c,2c)|=(a + b+c)^3

Using the property of determinants and without expanding, prove that: |[-a^2,a b, a c],[ b a, -b^2,b c],[c a, c b,-c^2]|=4a^2b^2c^2

Prove that |{:(a,b,c),(a^(2),b^(2),c^(2)),(b+c,c+a,a+b):}|=(a-b)(b-c)(c-a)(a+b+c)

Prove that: {:|(a^2,a,b+c),(b^2,b,c+a),(c^2,c,ab)| = -(a+b+c)(a-b)(b-c)(c-a)

Prove that |a ,b+c, a^2,b, c+a, b^2,c, a+b, c^2|=-(a+b+c)xx(a-b)(b-c)(c- a)

Prove that |a ,b+c, a^2,b, c+a, b^2,c, a+b, c^2|=-(a+b+c)xx(a-b)(b-c)(c- a)

Prove that: |(a,a+c,a-b),(b-c,b,b+a),(c+b,c-a,c)|=(a+b+c)(a^(2)+b^(2)+c^(2))

Prove that |(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,c)|=(a+b+c)(a^(2)+b^(2)+c^(2)) .