Home
Class 10
MATHS
Prove: sin^2A+1/(1+tan^2A)=1...

Prove: `sin^2A+1/(1+tan^2A)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: sin^(2)A+(1)/(1+tan^(2)A)=1

Prove: (1+tan^2A)+(1+1/(tan^2A))=1/(sin^2A-sin^4A)

Prove: (1+tan^2A)+(1+1/(tan^2A))=1/(sin^2A-sin^4A)

Prove: (cos^2 A + tan^2 A -1)/(sin^2 A ) = tan^2 A

Prove that: (tan A)/(1+tan^2A)^2 + (cot A)/(1+cot^2A)^2 = sin A cos A .

Prove that (1 + 1/(tan^2A)) (1 + 1/(cot^2A)) = 1/(sin^2 A - sin^4 A )

Prove that : (1+ (1)/(tan^2 A)) (1 +(1)/(cot^2 A)) = (1)/(sin^2 A - sin^4 A)

Prove that (sin2A)/(1+cos2A)=tan A

Prove that cos^2A-sin^2A = (1-tan^2A)/(1+tan^2A) .

If sin^4 A + sin^2 A=1 , prove that: tan^4 A - tan^2 A =1