Home
Class 11
MATHS
sin(B-C)/2=(b-c)/a*cosA/2...

`sin(B-C)/2=(b-c)/a*cosA/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A ,\ B ,\ C are the interior angles of a triangle A B C , prove that tan((C+A)/2)=cotB/2 (ii) sin((B+C)/2)=cosA/2

If A, B and C are interior angles of a triangle ABC, then show that "sin"((B+C)/2)=cosA/2 .

If A+B+C=180^@ prove that: sin(B+2C)+sin(C+2A)+sin(A+2B)= 4 sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)

Prove that (sin(B-C))/(cosB cosC)+(sin(C-A))/(cosC cosA)+(sin(A-B))/(cosA cosB) =0 .

In a quadrilateral if sin(A+B)/2cos(A-B)/2+sin(c+D)/2cos(c-D)/2=2, then cosA/2cosB/2+cosA/2cosc/2+cosA/2 cosD/2+cosB/2 cosC/2+cosB/2 cosD/2+cosC/2 cosD/2=

Show that (a sin (B-C))/( b^(2) - c^(2)) - ( b sin (C-A))/( c^(2) - a^(2)) - ( c sin ( A- B))/( a^(2) -b^(2))

Prove that (a sin(B-C))/(b^(2)-c^(2))=(b sin(C-A))/(c^(2)-a^(2))=(c sin(A-B))/(a^(2)-b^(2))

(x) (a sin(B-C))/(b^(2)-c^(2)) = (b sin (C-A))/(c^(2)-a^(2)) = (c sin(A-B))/(a^(2)-b^(2))

Solve the following: If A+B+C=pi ,prove that sin(B+2C)+sin(C+2A)+sin(A+2B)= 4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)