Home
Class 12
MATHS
ABCD is a quadrilateral. The bisectors o...

ABCD is a quadrilateral. The bisectors of angle A and B intersect at P, show that `angle C +angle D = 2angle APB`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a quadrilateral ABCD, the bisector of angleC angleD intersect at O. Prove that angleCOD=(1)/(2)(angleA+angleB)

If a quadrilateral ABCD, the bisector of angleC angleD intersect at O. Prove that angleCOD=(1)/(2)(angleA+angleB)

If a quadrilateral ABCD, the bisector of angleC angleD intersect at O. Prove that angleCOD=(1)/(2)(angleA+angleB)

If a quadrilateral ABCD, the bisector of angleC angleD intersect at O. Prove that angleCOD=(1)/(2)(angleA+angleB)

If a quadrilateral ABCD, the bisector of angleC & angleD intersect at O. Prove that angleCOD=(1)/(2)(angleA+angleB)

In parallelogram ABCD, bisectors of angles A and B intersect each other at "O" the value of angle AOB is.

ABCD is a parallelogram. The bisector of angle A intersects CD at X and bisector of angle C intersects AB at Y. Is AXCY a parallelogram? Give reason.

In a quadrilateral A B C D , bisectors of angles A\ a n d\ B intersect at O such that /_A O B=75^0, then write the value of /_C+\ /_D

In a quadrilateral A B C D , bisectors of angles A\ a n d\ B intersect at O such that /_A O B=75^0, then write the value of /_C+\ /_D