Home
Class 11
PHYSICS
A particle moves from position vector v...

A particle moves from position vector ` vecr_1 = ( 23 hat I + 2 hat j - 6 hat k)` to position vector, ` vec r-2 = ( 14 hat I + 13 hat j+ 9 hat k)` in metre under the action of a constant force of ` vec F = 9 14 hat i+ hat j + 3 hat k) N`. Calculat word done by the force.

Promotional Banner

Similar Questions

Explore conceptually related problems

A particle moved from position vec r_(1) = 3 hat i + 2 hat j - 6 hat k to position vec r_(2) = 14 hat i + 13 hat j + 9 hat k under the action of a force ( 4 hat i + hat j + 3 hat k) newton. Find the work done

A particle is displaced from position vec(r )_(1) = (3hat(i) + 2hat(j) + 6hat(k)) to another position vec(r )_(2)= (14hat(i) + 13hat(j) + 9hat(k)) under the impact of a force 5 hat(i)N . The work done will be given by

A particle moves form position vec(s_(1))=(3hat(i)+2hat(j)-6hat(k)) m to position of vec(s_(2))=(14hat(i)+13hat(j)-9hat(k)) m, under the action of a force vec(F)=(14hat(i)+13hat(j)-9hat(k)) N, The work done by the force is

A particle moves form position vec(s_(1))=(3hat(i)+2hat(j)-6hat(k)) m to position of vec(s_(2))=(14hat(i)+13hat(j)-9hat(k)) m, under the action of a force vec(F)=(14hat(i)+13hat(j)-9hat(k)) N, The work done by the force is

Show that vectors vec A =2 hat I -3 hat j - hat k and vec vec B =- 6 hat I + 9 hat j + 3 hat k are paarallel.

For given vectors vec a = 2 hat i - hat j + 2 hat k and vec b = - hat i + hat j - hat k , find the unit vector in the direction of the vector vec a + vec b .

A body is displaced from vec r_(A) =(2hat i + 4hatj -6hat k) to vecr_(B) = (6hat i -4hat j +3 hat k) under a constant force vec F = (2 hat i + 3 hat j - hat k) . Find the work done.

For given vectors, vec a =2 hat i- hat j+2hat k and vec b =-hat i +hat j - hat k , find the unit vector in the direction of the vector vec a+ vec b .

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

If vec a = hat i + hat j + hat k , vec b = 2 hat i - hat j + 3 hat k and vec c = hat i - 2 hat j + hat k , find a unit vector parallel to the vector 2 veca - vec b + 3 vec c