Home
Class 12
MATHS
int(0)^(e^(2)){(1)/((logx))-(1)/((logx)^...

`int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int{(1)/((logx))-(1)/((logx)^(2))}dx=?

int[(1)/(logx)-(1)/((logx)^(2))]dx=

int [(1)/(logx)-(1)/((logx)^(2))]dx

int_(e)^(e^(2)) (1/logx-1/((logx)^(2)))dx=

Prove that, int_(2)^(e)[(1)/(logx)-(1)/((logx)^(2))]dx=e-(2)/(log2)

int (logx-1)/((logx)^(2)) dx =

int(logx)/((1+ logx)^(2))dx=

int_(1)^(e)(dx)/(x(1+logx))

int[log(logx)+(1)/((logx)^(2))]dx