Home
Class 12
MATHS
lf (1 + x + x^2 + x^3)^5 = a0+a1x +a2x^2...

lf `(1 + x + x^2 + x^3)^5 = a_0+a_1x +a_2x^2+.....+a_(15)x^15`, then `a_(10)` equals to

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1 - x + x^2)^n = a_0 + a_1 x + a_2x^2 + ..... + a_(2n)x^(2n) then a_0 + a_2 + a_4 + ... + a_(2n) equals

If (1 - x + x^2)^n = a_0 + a_1x + a_2x^2 +...+ a_(2n) x^(2n) then a_0 + a_2 + a_4 +...+ a_(2n) is equal to

If (1+x+x^2+x^3)^100=a_0+a_1x+a_2x^2+.......+a_300x^300, then

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_1 = ?

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_2/a_1 =

If (1+2x+3x^2)^(10)=a_0+a_1x+a_2x^2++a_(20)x^(20),t h e na_1 equals

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_1 +a_2 + ……a_(2n) = 3^n

If (1 + x +x^2)^n = a_0 =a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_1 +a_3 +a_5 + …..a_(2n - 1) = (3^n - 1)/(2)