Home
Class 12
MATHS
The sum of : 3.^nC0-8.^nC1+13.^nC2-18.^n...

The sum of : `3.^nC_0-8.^nC_1+13.^nC_2-18.^nC_3+....` upto `(n+1)` terms is `(n>=2)`:

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ""^0C_0-^nC_1+^nC_2-....+ -1^(n^n)C_n is

^nC_8=^nC_8 , n=…….

The value of nC_0. ^nC_n +^nC_1 . ^nC_(n-1)++……..+^nC_n . ^nC_0

The sum to (n + 1) terms of the series 3.nC_0 - 8.nC_1 +13.nC_2 -18.nC_2 +........ is

Find n if "^nC_2 = ^nC_3 .

If .^nC_0+3.^nC_1+5^nC_2+7^nC_3+ . . .till (n+1) term=2^100*101 then the value of 2[(n-1)/2] where [.] is G.I.F)

The sum of the series 1+(1/2) ^nC_1 +(1/3) ^nC_2 +....+(1/(n+1)) ^nC_n is equal to

Prove that ^nC_0-^nC_1+^nC_2-^nC_3+....+(-1)^r ^C_r+....=(-1)^(r-1) ^(n-1)C_(r-1)

If ^nC_9 = ^nC_8 then n=………..