Home
Class 12
MATHS
"I f"int(dx)/(cos^3xsqrt(sin2x))=a(tan^2...

`"I f"int(dx)/(cos^3xsqrt(sin2x))=a(tan^2x+b)sqrt(tanx)+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

Ifint(dx)/(cos^3xsqrt(sin2x))=a(tan^2x+b)sqrt(tanx)+c ,t h e n (a) a=(sqrt(2))/5,b=1/(sqrt(5)) (b) a=(sqrt(2))/5,b=5 (c) a=(sqrt(2))/5,b=-1/(sqrt(5)) (d) a=(sqrt(2))/5, b=sqrt(5)

Ifint(dx)/(cos^3xsqrt(sin2x))=a(tan^2x+b)sqrt(tanx)+c ,t h e n (a) a=(sqrt(2))/5,b=1/(sqrt(5)) (b) a=(sqrt(2))/5,b=5 (c) a=(sqrt(2))/5,b=-1/(sqrt(5)) (d) a=(sqrt(2))/5, b=sqrt(5)

int (dx)/(cos^(3)xsqrt(sin 2x))

int(dx)/(cos2x+sqrt(3)sin2x)

int (dx)/(cos^(3)xsqrt(2sin2x)) =

Evaluate: int(dx)/(cos^3xsqrt(sin2x))

Evaluate: int(dx)/(cos^3xsqrt(sin2x))

If int(dx)/(cos^(3)xsqrt(2sin2x))=(tanx)^(A)+C(tanx)^(B)+K where K is a constant of integration, then A+B+C is equal to

int(dx)/(cos^(3)xsqrt(2sin 2x)) is equal to

Evaluate: int(dx)/(cos^(3)xsqrt(2sin2x))