Home
Class 12
MATHS
If 1/(1!10!)+1/(2!9!)+1/(3! 8!)+…… +1/(...

If `1/(1!10!)+1/(2!9!)+1/(3! 8!)+…… +1/(1!10!)=2/(k!) (2^(k-1)-1)` then find the value of `k`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(k)-2^(k-1)=8 then the value of k^3 is:

If the lines (x-1)/(k)=(y+1)/(3)=(z-1)/(4)and(x-3)/(1)=(2y-9)/(2k)=(z)/(1) intersect, then find the value of k

If the lines (x-1)/(k)=(y+1)/(3)=(z-1)/(4)and(x-3)/(1)=(2y-9)/(2k)=(z)/(1) intersect, then find the value of k

The value of tan ^(-1) (1) + cos ^(-1) (-(1)/(2) ) + sin ^(-1) (-(1)/(2)) is equal to (3pi)/(k) . Find the value of K.

Sum of the series 1+(1+2)+(1+2+3)+(1+2+3+4)+... to n terms be 1/m n(n+1)[(2n+1)/k+1] then find the value of k+m

Find the value off sum_(k1)^10(2+3^k)

If (10)^(9) + 2(11)^(1) (10)^(8) + 3(11)^(2) (10)^(7) + …. + 10(11)^(9) = k(10)^(9) , then k is equal to

If (10)^(9) + 2 (11)^(1) (10)^(8) + 3(11)^(2) ( 10)^(7) + …. =k ( 10)^(9) , then k is equal to

If (x^(2)+10)/((x^(2)+1)^(2))=(k)/(x^(2)+1)+(9)/((x^(2)+1)^(2)), then the value of "k" is

If k-1,k+1 and 2k+3 are in AP , then the value of k is