Home
Class 9
MATHS
(x−y)(x+y)(x^2+y^2)(x^4+y^4) is equal to...

`(x−y)(x+y)(x^2+y^2)(x^4+y^4)` is equal to=?  (a) `x^16 − y^16`  (b) `x^8 − y^8`  (c) `x^8 + y^8`  (d) `x^16 + y^16`    

Promotional Banner

Similar Questions

Explore conceptually related problems

(x-y)(x+y)(x^(2)+y^(2))(x^(4)+y^(4)) is equal ot: x^(16)-y^(16)(b)x^(8)-y^(8)x^(8)+y^(8)(d)x^(16)+y^(16)

Simplify: (i) (x-y)(x+y)x^2+y^2)\ (x^4+y^4) (ii) (2x-1)\ (2x+1)(4x^2+1)(16 x^4+1) (iii) (7m-8n)^2+(7m+8n)^2

I. x^(2) + 4x+4 = 0 II. y^(2) - 8y + 16 = 0

{:("Column" A ,, "Column" B), ((3x^(2) - 5)- (2x^(2) - 5 + y^(2)) ,, (a) x^(2) + xy + y^(2)) , (9x^(2) - 16y^(2) ,, (b) 2) , ((x^(3) - y^(3))/(x-y) ,, (c) (9x + 16y) (9x - 16y)) , ("The degree of " (x + 2) (x+3) ,, (d) x^(2) - y^(2)) , (,, (e) 1) , (,, (f) (3x + 4y) (3x - 4y)):}

If x^(4)+y^(4)=17 and x+y=1, then what is the value of x^(2)y^(2)-2xy?( a) 8 (b) 10(c)12 (d) 16

The equation of the circle having the intercept on the line y+2x=0 by the circle x^2 + y^2 + 4x + 6y = 0 as a diameter is : (A) 5x^2 + 5y^2 - 8x + 16y =0 (B) 5x^2 + 5y^2 + 8x - 16y =0 (C) 5x^2 + 5y^2 - 8x - 16y =0 (D) 5x^2 + 5y^2 + 8x+- 16y =0

The equation of the circle having the intercept on the line y+2x=0 by the circle x^2 + y^2 + 4x + 6y = 0 as a diameter is : (A) 5x^2 + 5y^2 - 8x + 16y =0 (B) 5x^2 + 5y^2 + 8x - 16y =0 (C) 5x^2 + 5y^2 - 8x - 16y =0 (D) 5x^2 + 5y^2 + 8x+- 16y =0

Simplify: (x-y)(x+y)x^(2)+y^(2))(x^(4)+y^(5))2x-1)(2x+1)(4x^(2)+1)(16x^(4)+1)(7m-8n)^(2)+(7m+8n)^(2)

If sqrt(y)=4x, then (x^(2))/(y) is (a) 2 (b) (1)/(16) (c) (1)/(4) (d) 4