Home
Class 11
MATHS
The domain of f(x)=sqrt((1-{x})/(1+{x})...

The domain of `f(x)=sqrt((1-{x})/(1+{x})` is (where (.) denotes fractional part of x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=(1)/(sqrt(-x^(2)+{x})) (where {.} denotes fractional part of x) is

The number of integral values of x in the domain of f(x)=sqrt(3-x)+sqrt(x-1)+log{x}, where {} denotes the fractional part of x, is

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

Domain of f(x)=(1)/(sqrt({x+1}-x^(2)+2x)) where {} denotes fractional part of x.

The domain of f(x)=sqrt(2{x}^(2)-3{x}+1) where {.} denotes the fractional part in [-1,1]

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x).

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.