Home
Class 11
MATHS
The domain of f(x)=log([x]) [x]+log({x}...

The domain of `f(x)=log_([x]) [x]+log_({x}) {x}` (where [.] denotes greatest integer function and ( denotes fractional function) is

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

The domain of function f(x)=sqrt(log_([x])|x|) (where denotes greatest integer function),is

The domain of f(x)=log_(e)(4[x]-x) ; (where [1 denotes greatest integer function) is

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

The domain of f(x)=log_(10)x^(2)+[sin x]+{cos x} is where [.]is greatest integer function and {.} is fractional part function is

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function: