Home
Class 11
MATHS
In any triangle A B C , prove that: (a...

In any triangle `A B C ,` prove that: `(a^2sin(B-C))/(sinB+ sin C)+(b^2sin(C-A))/(sinC+ sin A)+(c^2sin(A-B))/(sinA+ sin B)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that (a^(2)sin(B-C))/(sin B + sinC) + (b^(2)sin(C-A))/(sinC + sinA) +(c^(2)sin(A-B))/(sinA + sinB)=0

Prove that (a^(2)sin(B-C))/(sin b+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0

In any triangle ABC, prove that: (a^(2)sin(B-C))/(sin B+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0

Prove that (a^2sin(B-C))/(sinB+sinC)+(b^2"sin"(C-A))/(sinC+sinA)+(c^2"sin"(A-B))/(sinA+sinB)=0

Prove that (a^2sin(B-C))/(sinb+sinC)+(b^2"sin"(C-A))/(sinC+sinA)+(c^2"sin"(A-B))/(sinA+sinB)=0

Prove that (a^2sin(B-C))/(sinb+sinC)+(b^2"sin"(C-A))/(sinC+sinA)+(c^2"sin"(A-B))/(sinA+sinB)=0

In any Delta ABC, prove that :(a^(2)sin(B-C))/(sin B+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0

Prove that (sin(B-C))/(sinB.sinC) + (sin(C-A))/(sinCsinA) + (sin(A-B))/(sinA.sinB) = 0

In any triangle A B C , prove that following: \ (a^2"sin"(B-C))/(sin A)+(b^2"sin"(C-A))/(sin B)+(c^2"sin"(A-B))/(sin C)=0

sin(B-C)/(sinB*sinC)+sin(C-A)/(sinC*sinA)+(sin(A-B))/(sin A*sin B)=0