Home
Class 12
MATHS
If int 2/(2-x)^2 ((2-x)/(2+x))^(1//3)\ d...

If `int 2/(2-x)^2 ((2-x)/(2+x))^(1//3)\ dx = lambda ((2+x)/(2-x))^mu + c` where `lambda and mu` are rational number in its simplest form then `(lambda+1/mu)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(2)^(4) (3x^(2)+1)/((x^(2)-1)^(3))dx = (lambda)/(n^(2)) where lambda, n in N and gcd(lambda,n) = 1 , then find the value of lambda + n

int(sin^(2)x)/(sec^(2)x-cos^(2)x) dx = lambda x - 1/mu tan^(-1)((tanx)/sqrt2)+C where C is constant of integration, then lambda^(2) +mu^(2) is equal to

If the integral I=int(dx)/(x^(10)+x)=lambda ln ((x^(9))/(1+x^(mu)))+C , (where, C is the constant of integration) then the value of (1)/(lambda)+mu is equal to

If the integral I=int(dx)/(x^(10)+x)=lambda ln ((x^(9))/(1+x^(mu)))+C , (where, C is the constant of integration) then the value of (1)/(lambda)+mu is equal to

Let f(x) = lambda + mu|x|+nu|x|^2 , where lambda,mu, nu in R , then f'(0) exists if

If x(sgn x)(sgn x)+|x|(sgnx)^(3)=lambda x^(mu), then the value of lambda+mu is: