Home
Class 12
MATHS
If In = int1^e (lnx)^n dx (n is a natura...

If `I_n = int_1^e (lnx)^n dx` (`n` is a natural number) then `I_2020+nI_m=e,` where `n, m in NN.` The value of `m+n` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

I_(m,n) = int_0^1 x^m (l_n x)^n dx equals:

If I_n=int( lnx)^n dx then I_n+nI_(n-1)

If I_n=int( lnx)^n dx then I_n+nI_(n-1)

If I_n=int( lnx)^n dx then I_n+nI_(n-1)

If I_(n)=int_(1)^(e)(log_(e)x)^(n)dx(n is a positive number),I_(2012)+(2012)I_(2011)=

If m,n in N, then the value of int_a^b(x-a)^m(b-x)^n dx is equal to

If m,n in N, then the value of int_a^b(x-a)^m(b-x)^n dx is equal to

If I_(n)=int(lnx)^(n)dx then I_(n)+nI_(n-1)

If = int_(1)^(e) (logx)^(n) dx, "then"I_(n)+nI_(n-1) is equal to